Diffusion Reflection and Fluorescence Lifetime Imaging Microscopy Study of Fluorophore-Conjugated Gold Nanoparticles or Nanorods in Solid Phantoms
نویسندگان
چکیده
In this paper we report the optical properties of fluorescein-conjugated gold nanoparticles (GNPs) in solid phantoms using diffusion reflection (DR) and fluorescence lifetime imaging microscopy (FLIM). The GNPs attached with fluorescein in solution were studied by fluorescence correlation spectroscopy. The intensity decays were recorded to reveal the fluorescence lifetime of fluorescein while in the near-field vicinity of the GNPs. The DR method was used to explore the solid phantoms containing GNPs, indicating the light propagation from the surface of solid phantoms. The resulting DR slopes of the reflected intensity showed the higher the GNP concentration, the bigger the slope. Fluorescence intensity, lifetime, and anisotropy images of solid phantoms were investigated by FLIM. The exploration of optical properties and molecular imaging combined with DR and FLIM methods is a new approach that has not been established until now. The combined DR-FLIM technique is expected to provide discrimination based on unique spectroscopic fingerprints of GNPs that could be utilized for cell imaging. This paper includes a combined study with a variety of methods, which may lead to multimodal imaging for surfaces (by FLIM) and deep penetration (up to cm by the DR) together.
منابع مشابه
Tissue-Like Phantoms as a Platform for Inserted Fluorescence Nano-Probes
Tissue-like phantoms are widely used as a model for mimicking the optical properties of live tissue. This paper presents the results of a diffusion reflection method and fluorescence lifetime imaging microscopy measurements of fluorescein-conjugated gold nanorods in solution, as well as inserted in solid tissue-imitating phantoms. A lack of consistency between the fluorescence lifetime results ...
متن کاملA Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy
Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...
متن کاملImaging of Cancer Cells using Gold Nanoparticels and Fluorescent Dyes by Multiphoton Microscopy
Due to the special optical properties, optical probes including metal nanoparticles (NPs), quantum dots, and fluorescent dyes, are increasingly used as labeling tools in biological imaging. Using multiphoton microscopy and fluorescence lifetime imaging (FLIM) system, we recorded the images from gold NPs conjugated to monoclonal ACT1 antibody, fluorescence dye Alexa 488 (A488) conjugated to ACT1...
متن کاملGold nanorods for fluorescence lifetime imaging in biology.
Two-photon luminescence (TPL) from gold nanorods shows considerable potential in biological imaging. We study the imaging of gold nanorods in Madin-Darby canine kidney (MDCK) cells using fluorescence lifetime imaging microscopy (FLIM). FLIM provides images with better contrast and sensitivity than intensity imaging. The characteristic fluorescence lifetime of gold nanorods is found to be less t...
متن کاملMultifunctional gold nanorod theragnostics probed by multi-photon imaging.
This study exhibits the fabrication of target-specific Gold nanorods (GNRs) coupled with an anti-tumorigenic apoptotic drug and provides tracking of the labeled particles as they migrate through cells and release their drug-load to targeted cancer cells. We utilize the photoluminescence property of GNRs and their ability to be conjugated with multiple agents to transform facile rods to a target...
متن کامل